Files
Recommender_System/test.ipynb

1899 lines
117 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"source": [
"# This Notebook is created with VS Code on Windows\r\n",
"# Create python virtual environment\r\n",
"!python -m venv .venv\r\n",
"# If you want to use it on macOS/Linux\r\n",
"# You may need to run sudo apt-get install python3-venv first\r\n",
"#python3 -m venv .venv\r\n",
"\r\n",
"# Install Python Packages\r\n",
"!pip install --user --upgrade pip\r\n",
"!pip install --upgrade setuptools\r\n",
"!pip install --user seaborn\r\n",
"!pip install --user numpy\r\n",
"!pip install --user pandas\r\n",
"!pip install --user matplotlib\r\n",
"!pip install --user plotly\r\n",
"!pip install --user nbformat\r\n",
"!pip install --user surprise\r\n"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: pip in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (21.2.4)\n",
"Requirement already satisfied: setuptools in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (57.4.0)\n",
"Requirement already satisfied: seaborn in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (0.11.2)\n",
"Requirement already satisfied: matplotlib>=2.2 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from seaborn) (3.3.4)\n",
"Requirement already satisfied: numpy>=1.15 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from seaborn) (1.19.5)\n",
"Requirement already satisfied: scipy>=1.0 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from seaborn) (1.6.1)\n",
"Requirement already satisfied: pandas>=0.23 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from seaborn) (1.2.2)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from matplotlib>=2.2->seaborn) (1.3.1)\n",
"Requirement already satisfied: cycler>=0.10 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n",
"Requirement already satisfied: python-dateutil>=2.1 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from matplotlib>=2.2->seaborn) (2.8.1)\n",
"Requirement already satisfied: pillow>=6.2.0 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from matplotlib>=2.2->seaborn) (8.1.0)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n",
"Requirement already satisfied: six in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from cycler>=0.10->matplotlib>=2.2->seaborn) (1.15.0)\n",
"Requirement already satisfied: pytz>=2017.3 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from pandas>=0.23->seaborn) (2021.1)\n",
"Requirement already satisfied: numpy in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (1.19.5)\n",
"Requirement already satisfied: pandas in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (1.2.2)\n",
"Requirement already satisfied: pytz>=2017.3 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from pandas) (2021.1)\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from pandas) (2.8.1)\n",
"Requirement already satisfied: numpy>=1.16.5 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from pandas) (1.19.5)\n",
"Requirement already satisfied: six>=1.5 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)\n",
"Requirement already satisfied: matplotlib in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (3.3.4)\n",
"Requirement already satisfied: pillow>=6.2.0 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from matplotlib) (8.1.0)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from matplotlib) (2.4.7)\n",
"Requirement already satisfied: python-dateutil>=2.1 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from matplotlib) (2.8.1)\n",
"Requirement already satisfied: cycler>=0.10 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from matplotlib) (0.10.0)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from matplotlib) (1.3.1)\n",
"Requirement already satisfied: numpy>=1.15 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from matplotlib) (1.19.5)\n",
"Requirement already satisfied: six in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from cycler>=0.10->matplotlib) (1.15.0)\n",
"Requirement already satisfied: plotly in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (5.3.0)\n",
"Requirement already satisfied: tenacity>=6.2.0 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from plotly) (8.0.1)\n",
"Requirement already satisfied: six in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from plotly) (1.15.0)\n",
"Requirement already satisfied: nbformat in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (5.1.3)\n",
"Requirement already satisfied: jupyter-core in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from nbformat) (4.7.1)\n",
"Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from nbformat) (3.2.0)\n",
"Requirement already satisfied: ipython-genutils in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from nbformat) (0.2.0)\n",
"Requirement already satisfied: traitlets>=4.1 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from nbformat) (5.0.5)\n",
"Requirement already satisfied: six>=1.11.0 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from jsonschema!=2.5.0,>=2.4->nbformat) (1.15.0)\n",
"Requirement already satisfied: attrs>=17.4.0 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from jsonschema!=2.5.0,>=2.4->nbformat) (21.2.0)\n",
"Requirement already satisfied: pyrsistent>=0.14.0 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from jsonschema!=2.5.0,>=2.4->nbformat) (0.18.0)\n",
"Requirement already satisfied: setuptools in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from jsonschema!=2.5.0,>=2.4->nbformat) (57.4.0)\n",
"Requirement already satisfied: pywin32>=1.0 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from jupyter-core->nbformat) (300)\n",
"Collecting surprise\n",
" Using cached surprise-0.1-py2.py3-none-any.whl (1.8 kB)\n",
"Collecting scikit-surprise\n",
" Using cached scikit-surprise-1.1.1.tar.gz (11.8 MB)\n",
"Requirement already satisfied: joblib>=0.11 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from scikit-surprise->surprise) (1.0.1)\n",
"Requirement already satisfied: numpy>=1.11.2 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from scikit-surprise->surprise) (1.19.5)\n",
"Requirement already satisfied: scipy>=1.0.0 in c:\\users\\oli\\appdata\\local\\programs\\python\\python38\\lib\\site-packages (from scikit-surprise->surprise) (1.6.1)\n",
"Requirement already satisfied: six>=1.10.0 in c:\\users\\oli\\appdata\\roaming\\python\\python38\\site-packages (from scikit-surprise->surprise) (1.15.0)\n",
"Building wheels for collected packages: scikit-surprise\n",
" Building wheel for scikit-surprise (setup.py): started\n",
" Building wheel for scikit-surprise (setup.py): finished with status 'done'\n",
" Created wheel for scikit-surprise: filename=scikit_surprise-1.1.1-cp38-cp38-win_amd64.whl size=734505 sha256=072c5d6f9bb826bb28bec68bdb20bf4de7eec14a769df95110fef9cd4def197d\n",
" Stored in directory: c:\\users\\oli\\appdata\\local\\pip\\cache\\wheels\\20\\91\\57\\2965d4cff1b8ac7ed1b6fa25741882af3974b54a31759e10b6\n",
"Successfully built scikit-surprise\n",
"Installing collected packages: scikit-surprise, surprise\n",
"Successfully installed scikit-surprise-1.1.1 surprise-0.1\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
" WARNING: The script surprise.exe is installed in 'C:\\Users\\Oli\\AppData\\Roaming\\Python\\Python38\\Scripts' which is not on PATH.\n",
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\n"
]
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 2,
"source": [
"import numpy as np # maths\r\n",
"import pandas as pd # data processing\r\n",
"import matplotlib.pyplot as plt\r\n",
"import seaborn as sns\r\n",
"import os\r\n",
"import re\r\n",
"\r\n",
"from plotly.offline import init_notebook_mode, iplot\r\n",
"import plotly.graph_objs as go\r\n",
"import plotly.offline as py\r\n",
"py.init_notebook_mode(connected=True)\r\n",
"\r\n",
"import warnings\r\n",
"warnings.filterwarnings('ignore')\r\n",
"\r\n",
"plt.style.use('fivethirtyeight')\r\n",
"plt.rcParams['figure.figsize'] = [18, 8]"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" requirejs.config({\n",
" paths: {\n",
" 'plotly': ['https://cdn.plot.ly/plotly-2.4.1.min']\n",
" }\n",
" });\n",
" require(['plotly'], function(Plotly) {\n",
" window._Plotly = Plotly;\n",
" });\n",
" }\n",
" </script>\n",
" "
]
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 3,
"source": [
"# Import Tables\r\n",
"reviews = pd.read_csv('./ml-1m/ratings.dat', names=['userId', 'movieId', 'rating', 'timestamp'], delimiter='::', engine='python')\r\n",
"movies = pd.read_csv('./ml-1m/movies.dat', names=['movieId', 'title', 'genres'], delimiter='::', engine='python')\r\n",
"users = pd.read_csv('./ml-1m/users.dat', names=['userId', 'gender', 'age', 'occupation', 'zip'], delimiter='::', engine='python')\r\n",
"\r\n",
"# Print Table shape\r\n",
"print('Reviews shape:', reviews.shape)\r\n",
"print('Users shape:', users.shape)\r\n",
"print('Movies shape:', movies.shape)"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Reviews shape: (1000209, 4)\n",
"Users shape: (6040, 5)\n",
"Movies shape: (3883, 3)\n"
]
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 4,
"source": [
"# Drop unused Attributes\r\n",
"reviews.drop(['timestamp'], axis=1, inplace=True) # Time\r\n",
"users.drop(['zip'], axis=1, inplace=True) # Zip-Code\r\n",
"\r\n",
"# Extract the movie year from title to extra attrbute\r\n",
"movies['release_year'] = movies['title'].str.extract(r'(?:\\((\\d{4})\\))?\\s*$', expand=False)"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 5,
"source": [
"# Print movie table\r\n",
"movies.head()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" movieId title genres \\\n",
"0 1 Toy Story (1995) Animation|Children's|Comedy \n",
"1 2 Jumanji (1995) Adventure|Children's|Fantasy \n",
"2 3 Grumpier Old Men (1995) Comedy|Romance \n",
"3 4 Waiting to Exhale (1995) Comedy|Drama \n",
"4 5 Father of the Bride Part II (1995) Comedy \n",
"\n",
" release_year \n",
"0 1995 \n",
"1 1995 \n",
"2 1995 \n",
"3 1995 \n",
"4 1995 "
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>movieId</th>\n",
" <th>title</th>\n",
" <th>genres</th>\n",
" <th>release_year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>Toy Story (1995)</td>\n",
" <td>Animation|Children's|Comedy</td>\n",
" <td>1995</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>Jumanji (1995)</td>\n",
" <td>Adventure|Children's|Fantasy</td>\n",
" <td>1995</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>Grumpier Old Men (1995)</td>\n",
" <td>Comedy|Romance</td>\n",
" <td>1995</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>Waiting to Exhale (1995)</td>\n",
" <td>Comedy|Drama</td>\n",
" <td>1995</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>Father of the Bride Part II (1995)</td>\n",
" <td>Comedy</td>\n",
" <td>1995</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 5
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 6,
"source": [
"# Changed feature values based on README_users.txt\r\n",
"ages_map = {1: 'Under 18',\r\n",
" 18: '18 - 24',\r\n",
" 25: '25 - 34',\r\n",
" 35: '35 - 44',\r\n",
" 45: '45 - 49',\r\n",
" 50: '50 - 55',\r\n",
" 56: '56+'}\r\n",
"\r\n",
"occupations_map = {0: 'Not specified',\r\n",
" 1: 'Academic / Educator',\r\n",
" 2: 'Artist',\r\n",
" 3: 'Clerical / Admin',\r\n",
" 4: 'College / Grad Student',\r\n",
" 5: 'Customer Service',\r\n",
" 6: 'Doctor / Health Care',\r\n",
" 7: 'Executive / Managerial',\r\n",
" 8: 'Farmer',\r\n",
" 9: 'Homemaker',\r\n",
" 10: 'K-12 student',\r\n",
" 11: 'Lawyer',\r\n",
" 12: 'Programmer',\r\n",
" 13: 'Retired',\r\n",
" 14: 'Sales / Marketing',\r\n",
" 15: 'Scientist',\r\n",
" 16: 'Self-Employed',\r\n",
" 17: 'Technician / Engineer',\r\n",
" 18: 'Tradesman / Craftsman',\r\n",
" 19: 'Unemployed',\r\n",
" 20: 'Writer'}\r\n",
"\r\n",
"gender_map = {'M': 'Male', 'F': 'Female'}\r\n",
"\r\n",
"users['age'] = users['age'].map(ages_map)\r\n",
"users['occupation'] = users['occupation'].map(occupations_map)\r\n",
"users['gender'] = users['gender'].map(gender_map)"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 7,
"source": [
"# Plot age kategories\r\n",
"\r\n",
"age_reindex = ['Under 18', '18 - 24', '25 - 34', '35 - 44', '45 - 49', '50 - 55', '56+']\r\n",
"age_counts = users['age'].value_counts().reindex(age_reindex)\r\n",
"sns.barplot(x=age_counts.values,\r\n",
" y=age_counts.index,\r\n",
" palette='magma').set_title(\r\n",
" 'Users age', fontsize=12)\r\n",
"\r\n",
"plt.show()"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1296x576 with 1 Axes>"
],
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\r\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\r\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\r\n<!-- Created with matplotlib (https://matplotlib.org/) -->\r\n<svg height=\"513.1275pt\" version=\"1.1\" viewBox=\"0 0 1210.060625 513.1275\" width=\"1210.060625pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\r\n <metadata>\r\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\r\n <cc:Work>\r\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\r\n <dc:date>2021-08-31T13:50:41.214400</dc:date>\r\n <dc:format>image/svg+xml</dc:format>\r\n <dc:creator>\r\n <cc:Agent>\r\n <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\r\n </cc:Agent>\r\n </dc:creator>\r\n </cc:Work>\r\n </rdf:RDF>\r\n </metadata>\r\n <defs>\r\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\r\n </defs>\r\n <g id=\"figure_1\">\r\n <g id=\"patch_1\">\r\n <path d=\"M 0 513.1275 \r\nL 1210.060625 513.1275 \r\nL 1210.060625 0 \r\nL 0 0 \r\nz\r\n\" style=\"fill:#f0f0f0;\"/>\r\n </g>\r\n <g id=\"axes_1\">\r\n <g id=\"patch_2\">\r\n <path d=\"M 75.340625 488.878125 \r\nL 1202.860625 488.878125 \r\nL 1202.860625 22.318125 \r\nL 75.340625 22.318125 \r\nz\r\n\" style=\"fill:#f0f0f0;\"/>\r\n </g>\r\n <g id=\"matplotlib.axis_1\">\r\n <g id=\"xtick_1\">\r\n <g id=\"line2d_1\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 75.340625 488.878125 \r\nL 75.340625 22.318125 \r\n\" style=\"fill:none;stroke:#cbcbcb;\"/>\r\n </g>\r\n <g id=\"line2d_2\"/>\r\n <g id=\"text_1\">\r\n <!-- 0 -->\r\n <g transform=\"translate(70.886875 503.015937)scale(0.14 -0.14)\">\r\n <defs>\r\n <path d=\"M 31.78125 66.40625 \r\nQ 24.171875 66.40625 20.328125 58.90625 \r\nQ 16.5 51.421875 16.5 36.375 \r\nQ 16.5 21.390625 20.328125 13.890625 \r\nQ 24.171875 6.390625 31.78125 6.390625 \r\nQ 39.453125 6.390625 43.28125 13.890625 \r\nQ 47.125 21.390625 47.125 36.375 \r\nQ 47.125 51.421875 43.28125 58.90625 \r\nQ 39.453125 66.40625 31.78125 66.40625 \r\nz\r\nM 31.78125 74.21875 \r\nQ 44.046875 74.21875 50.515625 64.515625 \r\nQ 56.984375 54.828125 56.984375 36.375 \r\nQ 56.984375 17.96875 50.515625 8.265625 \r\nQ 44.046875 -1.421875 31.78125 -1.421875 \r\nQ 19.53125 -1.421875 13.0625 8.265625 \r\nQ 6.59375 17.96875 6.59375 36.375 \r\nQ 6.59375 54.828125 13.0625 64.515625 \r\nQ 19.53125 74.21875 31.78125 74.21875 \r\nz\r\n\" id=\"DejaVuSans-48\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_2\">\r\n <g id=\"line2d_3\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 203.421323 488.878125 \r\nL 203.421323 22.318125 \r\n\" style=\"fill:none;stroke:#cbcbcb;\"/>\r\n </g>\r\n <g id=\"line2d_4\"/>\r\n <g id=\"text_2\">\r\n <!-- 250 -->\r\n <g transform=\"translate(190.060073 503.015937)scale(0.14 -0.14)\">\r\n <defs>\r\n <path d=\"M 19.1875 8.296875 \r\nL 53.609375 8.296875 \r\nL 53.609375 0 \r\nL 7.328125 0 \r\nL 7.328125 8.296875 \r\nQ 12.9375 14.109375 22.625 23.890625 \r\nQ 32.328125 33.6875 34.8125 36.53125 \r\nQ 39.546875 41.84375 41.421875 45.53125 \r\nQ 43.3125 49.21875 43.3125 52.78125 \r\nQ 43.3125 58.59375 39.234375 62.25 \r\nQ 35.15625 65.921875 28.609375 65.921875 \r\nQ 23.96875 65.921875 18.8125 64.3125 \r\nQ 13.671875 62.703125 7.8125 59.421875 \r\nL 7.8125 69.390625 \r\nQ 13.765625 71.78125 18.9375 73 \r\nQ 24.125 74.21875 28.421875 74.21875 \r\nQ 39.75 74.21875 46.484375 68.546875 \r\nQ 53.21875 62.890625 53.21875 53.421875 \r\nQ 53.21875 48.921875 51.53125 44.890625 \r\nQ 49.859375 40.875 45.40625 35.40625 \r\nQ 44.1875 33.984375 37.640625 27.21875 \r\nQ 31.109375 20.453125 19.1875 8.296875 \r\nz\r\n\" id=\"DejaVuSans-50\"/>\r\n <path d=\"M 10.796875 72.90625 \r\nL 49.515625 72.90625 \r\nL 49.515625 64.59375 \r\nL 19.828125 64.59375 \r\nL 19.828125 46.734375 \r\nQ 21.96875 47.46875 24.109375 47.828125 \r\nQ 26.265625 48.1875 28.421875 48.1875 \r\nQ 40.625 48.1875 47.75 41.5 \r\nQ 54.890625 34.8125 54.890625 23.390625 \r\nQ 54.890625 11.625 47.5625 5.09375 \r\nQ 40.234375 -1.421875 26.90625 -1.421875 \r\nQ 22.3125 -1.421875 17.546875 -0.640625 \r\nQ 12.796875 0.140625 7.71875 1.703125 \r\nL 7.71875 11.625 \r\nQ 12.109375 9.234375 16.796875 8.0625 \r\nQ 21.484375 6.890625 26.703125 6.890625 \r\nQ 35.15625 6.890625 40.078125 11.328125 \r\nQ 45.015625 15.765625 45.015625 23.390625 \r\nQ 45.015625 31 40.078125 35.4375 \r\nQ 35.15625 39.890625 26.703125 39.890625 \r\nQ 22.75 39.890625 18.8125 39.015625 \r\nQ 14.890625 38.140625 10.796875 36.28125 \r\nz\r\n\" id=\"DejaVuSans-53\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_3\">\r\n <g id=\"line2d_5\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 331.502021 488.878125 \r\nL 331.502021 22.318125 \r\n\" style=\"fill:none;stroke:#cbcbcb;\"/>\r\n </g>\r\n <g id=\"line2d_6\"/>\r\n <g id=\"text_3\">\r\n <!-- 500 -->\r\n <g transform=\"translate(318.140771 503.015937)scale(0.14 -0.14)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_4\">\r\n <g id=\"line2d_7\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 459.582719 488.878125 \r\nL 459.582719 22.318125 \r\n\" style=\"fill:none;stroke:#cbcbcb;\"/>\r\n </g>\r\n <g id=\"line2d_8\"/>\r\n <g id=\"text_4\">\r\n <!-- 750 -->\r\n <g transform=\"translate(446.221469 503.015937)scale(0.14 -0.14)\">\r\n <defs>\r\n <path d=\"M 8.203125 72.90625 \r\nL 55.078125 72.90625 \r\nL 55.078125 68.703125 \r\nL 28.609375 0 \r\nL 18.3125 0 \r\nL 43.21875 64.59375 \r\nL 8.203125 64.59375 \r\nz\r\n\" id=\"DejaVuSans-55\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-55\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_5\">\r\n <g id=\"line2d_9\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 587.663417 488.878125 \r\nL 587.663417 22.318125 \r\n\" style=\"fill:none;stroke:#cbcbcb;\"/>\r\n </g>\r\n <g id=\"line2d_10\"/>\r\n <g id=\"text_5\">\r\n <!-- 1000 -->\r\n <g transform=\"translate(569.848417 503.015937)scale(0.14 -0.14)\">\r\n <defs>\r\n <path d=\"M 12.40625 8.296875 \r\nL 28.515625 8.296875 \r\nL 28.515625 63.921875 \r\nL 10.984375 60.40625 \r\nL 10.984375 69.390625 \r\nL 28.421875 72.90625 \r\nL 38.28125 72.90625 \r\nL 38.28125 8.296875 \r\nL 54.390625 8.296875 \r\nL 54.390625 0 \r\nL 12.40625 0 \r\nz\r\n\" id=\"DejaVuSans-49\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"190.869141\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_6\">\r\n <g id=\"line2d_11\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 715.744115 488.878125 \r\nL 715.744115 22.318125 \r\n\" style=\"fill:none;stroke:#cbcbcb;\"/>\r\n </g>\r\n <g id=\"line2d_12\"/>\r\n <g id=\"text_6\">\r\n <!-- 1250 -->\r\n <g transform=\"translate(697.929115 503.015937)scale(0.14 -0.14)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"190.869141\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_7\">\r\n <g id=\"line2d_13\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 843.824813 488.878125 \r\nL 843.824813 22.318125 \r\n\" style=\"fill:none;stroke:#cbcbcb;\"/>\r\n </g>\r\n <g id=\"line2d_14\"/>\r\n <g id=\"text_7\">\r\n <!-- 1500 -->\r\n <g transform=\"translate(826.009813 503.015937)scale(0.14 -0.14)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"190.869141\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_8\">\r\n <g id=\"line2d_15\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 971.90551 488.878125 \r\nL 971.90551 22.318125 \r\n\" style=\"fill:none;stroke:#cbcbcb;\"/>\r\n </g>\r\n <g id=\"line2d_16\"/>\r\n <g id=\"text_8\">\r\n <!-- 1750 -->\r\n <g transform=\"translate(954.09051 503.015937)scale(0.14 -0.14)\">\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-55\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"190.869141\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"xtick_9\">\r\n <g id=\"line2d_17\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 1099.986208 488.878125 \r\nL 1099.986208 22.318125 \r\n\" style=\"fill:none;stroke:#cbcbcb;\"/>\r\n </g>\r\n <g id=\"line2d_18\"/>\r\n <g id=\"text_9\">\r\n <!-- 2000 -->\r\n <g transform=\"translate(1082.171208 503.015937)scale(0.14 -0.14)\">\r\n <use xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"190.869141\" xlink:href=\"#DejaVuSans-48\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"matplotlib.axis_2\">\r\n <g id=\"ytick_1\">\r\n <g id=\"line2d_19\"/>\r\n <g id=\"text_10\">\r\n <!-- Under 18 -->\r\n <g transform=\"translate(7.2 60.962746)scale(0.14 -0.14)\">\r\n <defs>\r\n <path d=\"M 8.6875 72.90625 \r\nL 18.609375 72.90625 \r\nL 18.609375 28.609375 \r\nQ 18.609375 16.890625 22.84375 11.734375 \r\nQ 27.09375 6.59375 36.625 6.59375 \r\nQ 46.09375 6.59375 50.34375 11.734375 \r\nQ 54.59375 16.890625 54.59375 28.609375 \r\nL 54.59375 72.90625 \r\nL 64.5 72.90625 \r\nL 64.5 27.390625 \r\nQ 64.5 13.140625 57.4375 5.859375 \r\nQ 50.390625 -1.421875 36.625 -1.421875 \r\nQ 22.796875 -1.421875 15.734375 5.859375 \r\nQ 8.6875 13.140625 8.6875 27.390625 \r\nz\r\n\" id=\"DejaVuSans-85\"/>\r\n <path d=\"M 54.890625 33.015625 \r\nL 54.890625 0 \r\nL 45.90625 0 \r\nL 45.90625 32.71875 \r\nQ 45.90625 40.484375 42.875 44.328125 \r\nQ 39.84375 48.1875 33.796875 48.1875 \r\nQ 26.515625 48.1875 22.3125 43.546875 \r\nQ 18.109375 38.921875 18.109375 30.90625 \r\nL 18.109375 0 \r\nL 9.078125 0 \r\nL 9.078125 54.6875 \r\nL 18.109375 54.6875 \r\nL 18.109375 46.1875 \r\nQ 21.34375 51.125 25.703125 53.5625 \r\nQ 30.078125 56 35.796875 56 \r\nQ 45.21875 56 50.046875 50.171875 \r\nQ 54.890625 44.34375 54.890625 33.015625 \r\nz\r\n\" id=\"DejaVuSans-110\"/>\r\n <path d=\"M 45.40625 46.390625 \r\nL 45.40625 75.984375 \r\nL 54.390625 75.984375 \r\nL 54.390625 0 \r\nL 45.40625 0 \r\nL 45.40625 8.203125 \r\nQ 42.578125 3.328125 38.25 0.953125 \r\nQ 33.9375 -1.421875 27.875 -1.421875 \r\nQ 17.96875 -1.421875 11.734375 6.484375 \r\nQ 5.515625 14.40625 5.515625 27.296875 \r\nQ 5.515625 40.1875 11.734375 48.09375 \r\nQ 17.96875 56 27.875 56 \r\nQ 33.9375 56 38.25 53.625 \r\nQ 42.578125 51.265625 45.40625 46.390625 \r\nz\r\nM 14.796875 27.296875 \r\nQ 14.796875 17.390625 18.875 11.75 \r\nQ 22.953125 6.109375 30.078125 6.109375 \r\nQ 37.203125 6.109375 41.296875 11.75 \r\nQ 45.40625 17.390625 45.40625 27.296875 \r\nQ 45.40625 37.203125 41.296875 42.84375 \r\nQ 37.203125 48.484375 30.078125 48.484375 \r\nQ 22.953125 48.484375 18.875 42.84375 \r\nQ 14.796875 37.203125 14.796875 27.296875 \r\nz\r\n\" id=\"DejaVuSans-100\"/>\r\n <path d=\"M 56.203125 29.59375 \r\nL 56.203125 25.203125 \r\nL 14.890625 25.203125 \r\nQ 15.484375 15.921875 20.484375 11.0625 \r\nQ 25.484375 6.203125 34.421875 6.203125 \r\nQ 39.59375 6.203125 44.453125 7.46875 \r\nQ 49.3125 8.734375 54.109375 11.28125 \r\nL 54.109375 2.78125 \r\nQ 49.265625 0.734375 44.1875 -0.34375 \r\nQ 39.109375 -1.421875 33.890625 -1.421875 \r\nQ 20.796875 -1.421875 13.15625 6.1875 \r\nQ 5.515625 13.8125 5.515625 26.8125 \r\nQ 5.515625 40.234375 12.765625 48.109375 \r\nQ 20.015625 56 32.328125 56 \r\nQ 43.359375 56 49.78125 48.890625 \r\nQ 56.203125 41.796875 56.203125 29.59375 \r\nz\r\nM 47.21875 32.234375 \r\nQ 47.125 39.59375 43.09375 43.984375 \r\nQ 39.0625 48.390625 32.421875 48.390625 \r\nQ 24.90625 48.390625 20.390625 44.140625 \r\nQ 15.875 39.890625 15.1875 32.171875 \r\nz\r\n\" id=\"DejaVuSans-101\"/>\r\n <path d=\"M 41.109375 46.296875 \r\nQ 39.59375 47.171875 37.8125 47.578125 \r\nQ 36.03125 48 33.890625 48 \r\nQ 26.265625 48 22.1875 43.046875 \r\nQ 18.109375 38.09375 18.109375 28.8125 \r\nL 18.109375 0 \r\nL 9.078125 0 \r\nL 9.078125 54.6875 \r\nL 18.109375 54.6875 \r\nL 18.109375 46.1875 \r\nQ 20.953125 51.171875 25.484375 53.578125 \r\nQ 30.03125 56 36.53125 56 \r\nQ 37.453125 56 38.578125 55.875 \r\nQ 39.703125 55.765625 41.0625 55.515625 \r\nz\r\n\" id=\"DejaVuSans-114\"/>\r\n <path id=\"DejaVuSans-32\"/>\r\n <path d=\"M 31.78125 34.625 \r\nQ 24.75 34.625 20.71875 30.859375 \r\nQ 16.703125 27.09375 16.703125 20.515625 \r\nQ 16.703125 13.921875 20.71875 10.15625 \r\nQ 24.75 6.390625 31.78125 6.390625 \r\nQ 38.8125 6.390625 42.859375 10.171875 \r\nQ 46.921875 13.96875 46.921875 20.515625 \r\nQ 46.921875 27.09375 42.890625 30.859375 \r\nQ 38.875 34.625 31.78125 34.625 \r\nz\r\nM 21.921875 38.8125 \r\nQ 15.578125 40.375 12.03125 44.71875 \r\nQ 8.5 49.078125 8.5 55.328125 \r\nQ 8.5 64.0625 14.71875 69.140625 \r\nQ 20.953125 74.21875 31.78125 74.21875 \r\nQ 42.671875 74.21875 48.875 69.140625 \r\nQ 55.078125 64.0625 55.078125 55.328125 \r\nQ 55.078125 49.078125 51.53125 44.71875 \r\nQ 48 40.375 41.703125 38.8125 \r\nQ 48.828125 37.15625 52.796875 32.3125 \r\nQ 56.78125 27.484375 56.78125 20.515625 \r\nQ 56.78125 9.90625 50.3125 4.234375 \r\nQ 43.84375 -1.421875 31.78125 -1.421875 \r\nQ 19.734375 -1.421875 13.25 4.234375 \r\nQ 6.78125 9.90625 6.78125 20.515625 \r\nQ 6.78125 27.484375 10.78125 32.3125 \r\nQ 14.796875 37.15625 21.921875 38.8125 \r\nz\r\nM 18.3125 54.390625 \r\nQ 18.3125 48.734375 21.84375 45.5625 \r\nQ 25.390625 42.390625 31.78125 42.390625 \r\nQ 38.140625 42.390625 41.71875 45.5625 \r\nQ 45.3125 48.734375 45.3125 54.390625 \r\nQ 45.3125 60.0625 41.71875 63.234375 \r\nQ 38.140625 66.40625 31.78125 66.40625 \r\nQ 25.390625 66.40625 21.84375 63.234375 \r\nQ 18.3125 60.0625 18.3125 54.390625 \r\nz\r\n\" id=\"DejaVuSans-56\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-85\"/>\r\n <use x=\"73.193359\" xlink:href=\"#DejaVuSans-110\"/>\r\n <use x=\"136.572266\" xlink:href=\"#DejaVuSans-100\"/>\r\n <use x=\"200.048828\" xlink:href=\"#DejaVuSans-101\"/>\r\n <use x=\"261.572266\" xlink:href=\"#DejaVuSans-114\"/>\r\n <use x=\"302.685547\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"334.472656\" xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"398.095703\" xlink:href=\"#DejaVuSans-56\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_2\">\r\n <g id=\"line2d_20\"/>\r\n <g id=\"text_11\">\r\n <!-- 18 - 24 -->\r\n <g transform=\"translate(22.260937 127.614174)scale(0.14 -0.14)\">\r\n <defs>\r\n <path d=\"M 4.890625 31.390625 \r\nL 31.203125 31.390625 \r\nL 31.203125 23.390625 \r\nL 4.890625 23.390625 \r\nz\r\n\" id=\"DejaVuSans-45\"/>\r\n <path d=\"M 37.796875 64.3125 \r\nL 12.890625 25.390625 \r\nL 37.796875 25.390625 \r\nz\r\nM 35.203125 72.90625 \r\nL 47.609375 72.90625 \r\nL 47.609375 25.390625 \r\nL 58.015625 25.390625 \r\nL 58.015625 17.1875 \r\nL 47.609375 17.1875 \r\nL 47.609375 0 \r\nL 37.796875 0 \r\nL 37.796875 17.1875 \r\nL 4.890625 17.1875 \r\nL 4.890625 26.703125 \r\nz\r\n\" id=\"DejaVuSans-52\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-49\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-56\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"159.033203\" xlink:href=\"#DejaVuSans-45\"/>\r\n <use x=\"195.117188\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"226.904297\" xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"290.527344\" xlink:href=\"#DejaVuSans-52\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_3\">\r\n <g id=\"line2d_21\"/>\r\n <g id=\"text_12\">\r\n <!-- 25 - 34 -->\r\n <g transform=\"translate(22.260937 194.265603)scale(0.14 -0.14)\">\r\n <defs>\r\n <path d=\"M 40.578125 39.3125 \r\nQ 47.65625 37.796875 51.625 33 \r\nQ 55.609375 28.21875 55.609375 21.1875 \r\nQ 55.609375 10.40625 48.1875 4.484375 \r\nQ 40.765625 -1.421875 27.09375 -1.421875 \r\nQ 22.515625 -1.421875 17.65625 -0.515625 \r\nQ 12.796875 0.390625 7.625 2.203125 \r\nL 7.625 11.71875 \r\nQ 11.71875 9.328125 16.59375 8.109375 \r\nQ 21.484375 6.890625 26.8125 6.890625 \r\nQ 36.078125 6.890625 40.9375 10.546875 \r\nQ 45.796875 14.203125 45.796875 21.1875 \r\nQ 45.796875 27.640625 41.28125 31.265625 \r\nQ 36.765625 34.90625 28.71875 34.90625 \r\nL 20.21875 34.90625 \r\nL 20.21875 43.015625 \r\nL 29.109375 43.015625 \r\nQ 36.375 43.015625 40.234375 45.921875 \r\nQ 44.09375 48.828125 44.09375 54.296875 \r\nQ 44.09375 59.90625 40.109375 62.90625 \r\nQ 36.140625 65.921875 28.71875 65.921875 \r\nQ 24.65625 65.921875 20.015625 65.03125 \r\nQ 15.375 64.15625 9.8125 62.3125 \r\nL 9.8125 71.09375 \r\nQ 15.4375 72.65625 20.34375 73.4375 \r\nQ 25.25 74.21875 29.59375 74.21875 \r\nQ 40.828125 74.21875 47.359375 69.109375 \r\nQ 53.90625 64.015625 53.90625 55.328125 \r\nQ 53.90625 49.265625 50.4375 45.09375 \r\nQ 46.96875 40.921875 40.578125 39.3125 \r\nz\r\n\" id=\"DejaVuSans-51\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-50\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"159.033203\" xlink:href=\"#DejaVuSans-45\"/>\r\n <use x=\"195.117188\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"226.904297\" xlink:href=\"#DejaVuSans-51\"/>\r\n <use x=\"290.527344\" xlink:href=\"#DejaVuSans-52\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_4\">\r\n <g id=\"line2d_22\"/>\r\n <g id=\"text_13\">\r\n <!-- 35 - 44 -->\r\n <g transform=\"translate(22.260937 260.917031)scale(0.14 -0.14)\">\r\n <use xlink:href=\"#DejaVuSans-51\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"159.033203\" xlink:href=\"#DejaVuSans-45\"/>\r\n <use x=\"195.117188\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"226.904297\" xlink:href=\"#DejaVuSans-52\"/>\r\n <use x=\"290.527344\" xlink:href=\"#DejaVuSans-52\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_5\">\r\n <g id=\"line2d_23\"/>\r\n <g id=\"text_14\">\r\n <!-- 45 - 49 -->\r\n <g transform=\"translate(22.260937 327.56846)scale(0.14 -0.14)\">\r\n <defs>\r\n <path d=\"M 10.984375 1.515625 \r\nL 10.984375 10.5 \r\nQ 14.703125 8.734375 18.5 7.8125 \r\nQ 22.3125 6.890625 25.984375 6.890625 \r\nQ 35.75 6.890625 40.890625 13.453125 \r\nQ 46.046875 20.015625 46.78125 33.40625 \r\nQ 43.953125 29.203125 39.59375 26.953125 \r\nQ 35.25 24.703125 29.984375 24.703125 \r\nQ 19.046875 24.703125 12.671875 31.3125 \r\nQ 6.296875 37.9375 6.296875 49.421875 \r\nQ 6.296875 60.640625 12.9375 67.421875 \r\nQ 19.578125 74.21875 30.609375 74.21875 \r\nQ 43.265625 74.21875 49.921875 64.515625 \r\nQ 56.59375 54.828125 56.59375 36.375 \r\nQ 56.59375 19.140625 48.40625 8.859375 \r\nQ 40.234375 -1.421875 26.421875 -1.421875 \r\nQ 22.703125 -1.421875 18.890625 -0.6875 \r\nQ 15.09375 0.046875 10.984375 1.515625 \r\nz\r\nM 30.609375 32.421875 \r\nQ 37.25 32.421875 41.125 36.953125 \r\nQ 45.015625 41.5 45.015625 49.421875 \r\nQ 45.015625 57.28125 41.125 61.84375 \r\nQ 37.25 66.40625 30.609375 66.40625 \r\nQ 23.96875 66.40625 20.09375 61.84375 \r\nQ 16.21875 57.28125 16.21875 49.421875 \r\nQ 16.21875 41.5 20.09375 36.953125 \r\nQ 23.96875 32.421875 30.609375 32.421875 \r\nz\r\n\" id=\"DejaVuSans-57\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-52\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"159.033203\" xlink:href=\"#DejaVuSans-45\"/>\r\n <use x=\"195.117188\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"226.904297\" xlink:href=\"#DejaVuSans-52\"/>\r\n <use x=\"290.527344\" xlink:href=\"#DejaVuSans-57\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_6\">\r\n <g id=\"line2d_24\"/>\r\n <g id=\"text_15\">\r\n <!-- 50 - 55 -->\r\n <g transform=\"translate(22.260937 394.219888)scale(0.14 -0.14)\">\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"159.033203\" xlink:href=\"#DejaVuSans-45\"/>\r\n <use x=\"195.117188\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"226.904297\" xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"290.527344\" xlink:href=\"#DejaVuSans-53\"/>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"ytick_7\">\r\n <g id=\"line2d_25\"/>\r\n <g id=\"text_16\">\r\n <!-- 56+ -->\r\n <g transform=\"translate(42.294062 460.871317)scale(0.14 -0.14)\">\r\n <defs>\r\n <path d=\"M 33.015625 40.375 \r\nQ 26.375 40.375 22.484375 35.828125 \r\nQ 18.609375 31.296875 18.609375 23.390625 \r\nQ 18.609375 15.53125 22.484375 10.953125 \r\nQ 26.375 6.390625 33.015625 6.390625 \r\nQ 39.65625 6.390625 43.53125 10.953125 \r\nQ 47.40625 15.53125 47.40625 23.390625 \r\nQ 47.40625 31.296875 43.53125 35.828125 \r\nQ 39.65625 40.375 33.015625 40.375 \r\nz\r\nM 52.59375 71.296875 \r\nL 52.59375 62.3125 \r\nQ 48.875 64.0625 45.09375 64.984375 \r\nQ 41.3125 65.921875 37.59375 65.921875 \r\nQ 27.828125 65.921875 22.671875 59.328125 \r\nQ 17.53125 52.734375 16.796875 39.40625 \r\nQ 19.671875 43.65625 24.015625 45.921875 \r\nQ 28.375 48.1875 33.59375 48.1875 \r\nQ 44.578125 48.1875 50.953125 41.515625 \r\nQ 57.328125 34.859375 57.328125 23.390625 \r\nQ 57.328125 12.15625 50.6875 5.359375 \r\nQ 44.046875 -1.421875 33.015625 -1.421875 \r\nQ 20.359375 -1.421875 13.671875 8.265625 \r\nQ 6.984375 17.96875 6.984375 36.375 \r\nQ 6.984375 53.65625 15.1875 63.9375 \r\nQ 23.390625 74.21875 37.203125 74.21875 \r\nQ 40.921875 74.21875 44.703125 73.484375 \r\nQ 48.484375 72.75 52.59375 71.296875 \r\nz\r\n\" id=\"DejaVuSans-54\"/>\r\n <path d=\"M 46 62.703125 \r\nL 46 35.5 \r\nL 73.1875 35.5 \r\nL 73.1875 27.203125 \r\nL 46 27.203125 \r\nL 46 0 \r\nL 37.796875 0 \r\nL 37.796875 27.203125 \r\nL 10.59375 27.203125 \r\nL 10.59375 35.5 \r\nL 37.796875 35.5 \r\nL 37.796875 62.703125 \r\nz\r\n\" id=\"DejaVuSans-43\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-53\"/>\r\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-54\"/>\r\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-43\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <g id=\"patch_3\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 75.340625 28.983268 \r\nL 189.076285 28.983268 \r\nL 189.076285 82.304411 \r\nL 75.340625 82.304411 \r\nz\r\n\" style=\"fill:#211740;\"/>\r\n </g>\r\n <g id=\"patch_4\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 75.340625 95.634696 \r\nL 640.432664 95.634696 \r\nL 640.432664 148.955839 \r\nL 75.340625 148.955839 \r\nz\r\n\" style=\"fill:#4e1f6f;\"/>\r\n </g>\r\n <g id=\"patch_5\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 75.340625 162.286125 \r\nL 1149.169196 162.286125 \r\nL 1149.169196 215.607268 \r\nL 75.340625 215.607268 \r\nz\r\n\" style=\"fill:#773176;\"/>\r\n </g>\r\n <g id=\"patch_6\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 75.340625 228.937554 \r\nL 686.541716 228.937554 \r\nL 686.541716 282.258696 \r\nL 75.340625 282.258696 \r\nz\r\n\" style=\"fill:#a74779;\"/>\r\n </g>\r\n <g id=\"patch_7\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 75.340625 295.588982 \r\nL 357.11816 295.588982 \r\nL 357.11816 348.910125 \r\nL 75.340625 348.910125 \r\nz\r\n\" style=\"fill:#d46471;\"/>\r\n </g>\r\n <g id=\"patch_8\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 75.340625 362.240411 \r\nL 329.45273 362.240411 \r\nL 329.45273 415.561554 \r\nL 75.340625 415.561554 \r\nz\r\n\" style=\"fill:#e89275;\"/>\r\n </g>\r\n <g id=\"patch_9\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" d=\"M 75.340625 428.891839 \r\nL 270.023286 428.891839 \r\nL 270.023286 482.212982 \r\nL 75.340625 482.212982 \r\nz\r\n\" style=\"fill:#efc497;\"/>\r\n </g>\r\n <g id=\"line2d_26\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" style=\"fill:none;stroke:#424242;stroke-width:7.2;\"/>\r\n </g>\r\n <g id=\"line2d_27\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" style=\"fill:none;stroke:#424242;stroke-width:7.2;\"/>\r\n </g>\r\n <g id=\"line2d_28\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" style=\"fill:none;stroke:#424242;stroke-width:7.2;\"/>\r\n </g>\r\n <g id=\"line2d_29\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" style=\"fill:none;stroke:#424242;stroke-width:7.2;\"/>\r\n </g>\r\n <g id=\"line2d_30\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" style=\"fill:none;stroke:#424242;stroke-width:7.2;\"/>\r\n </g>\r\n <g id=\"line2d_31\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" style=\"fill:none;stroke:#424242;stroke-width:7.2;\"/>\r\n </g>\r\n <g id=\"line2d_32\">\r\n <path clip-path=\"url(#p5e83eaccf1)\" style=\"fill:none;stroke:#424242;stroke-width:7.2;\"/>\r\n </g>\r\n <g id=\"patch_10\">\r\n <path d=\"M 75.340625 488.878125 \r\nL 75.340625 22.318125 \r\n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\r\n </g>\r\n <g id=\"patch_11\">\r\n <path d=\"M 1202.860625 488.878125 \r\nL 1202.860625 22.318125 \r\n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\r\n </g>\r\n <g id=\"patch_12\">\r\n <path d=\"M 75.340625 488.878125 \r\nL 1202.860625 488.878125 \r\n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\r\n </g>\r\n <g id=\"patch_13\">\r\n <path d=\"M 75.340625 22.318125 \r\nL 1202.860625 22.318125 \r\n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\r\n </g>\r\n <g id=\"text_17\">\r\n <!-- Users age -->\r\n <g transform=\"translate(609.215 16.318125)scale(0.12 -0.12)\">\r\n <defs>\r\n <path d=\"M 44.28125 53.078125 \r\nL 44.28125 44.578125 \r\nQ 40.484375 46.53125 36.375 47.5 \r\nQ 32.28125 48.484375 27.875 48.484375 \r\nQ 21.1875 48.484375 17.84375 46.4375 \r\nQ 14.5 44.390625 14.5 40.28125 \r\nQ 14.5 37.15625 16.890625 35.375 \r\nQ 19.28125 33.59375 26.515625 31.984375 \r\nL 29.59375 31.296875 \r\nQ 39.15625 29.25 43.1875 25.515625 \r\nQ 47.21875 21.78125 47.21875 15.09375 \r\nQ 47.21875 7.46875 41.1875 3.015625 \r\nQ 35.15625 -1.421875 24.609375 -1.421875 \r\nQ 20.21875 -1.421875 15.453125 -0.5625 \r\nQ 10.6875 0.296875 5.421875 2 \r\nL 5.421875 11.28125 \r\nQ 10.40625 8.6875 15.234375 7.390625 \r\nQ 20.0625 6.109375 24.8125 6.109375 \r\nQ 31.15625 6.109375 34.5625 8.28125 \r\nQ 37.984375 10.453125 37.984375 14.40625 \r\nQ 37.984375 18.0625 35.515625 20.015625 \r\nQ 33.0625 21.96875 24.703125 23.78125 \r\nL 21.578125 24.515625 \r\nQ 13.234375 26.265625 9.515625 29.90625 \r\nQ 5.8125 33.546875 5.8125 39.890625 \r\nQ 5.8125 47.609375 11.28125 51.796875 \r\nQ 16.75 56 26.8125 56 \r\nQ 31.78125 56 36.171875 55.265625 \r\nQ 40.578125 54.546875 44.28125 53.078125 \r\nz\r\n\" id=\"DejaVuSans-115\"/>\r\n <path d=\"M 34.28125 27.484375 \r\nQ 23.390625 27.484375 19.1875 25 \r\nQ 14.984375 22.515625 14.984375 16.5 \r\nQ 14.984375 11.71875 18.140625 8.90625 \r\nQ 21.296875 6.109375 26.703125 6.109375 \r\nQ 34.1875 6.109375 38.703125 11.40625 \r\nQ 43.21875 16.703125 43.21875 25.484375 \r\nL 43.21875 27.484375 \r\nz\r\nM 52.203125 31.203125 \r\nL 52.203125 0 \r\nL 43.21875 0 \r\nL 43.21875 8.296875 \r\nQ 40.140625 3.328125 35.546875 0.953125 \r\nQ 30.953125 -1.421875 24.3125 -1.421875 \r\nQ 15.921875 -1.421875 10.953125 3.296875 \r\nQ 6 8.015625 6 15.921875 \r\nQ 6 25.140625 12.171875 29.828125 \r\nQ 18.359375 34.515625 30.609375 34.515625 \r\nL 43.21875 34.515625 \r\nL 43.21875 35.40625 \r\nQ 43.21875 41.609375 39.140625 45 \r\nQ 35.0625 48.390625 27.6875 48.390625 \r\nQ 23 48.390625 18.546875 47.265625 \r\nQ 14.109375 46.140625 10.015625 43.890625 \r\nL 10.015625 52.203125 \r\nQ 14.9375 54.109375 19.578125 55.046875 \r\nQ 24.21875 56 28.609375 56 \r\nQ 40.484375 56 46.34375 49.84375 \r\nQ 52.203125 43.703125 52.203125 31.203125 \r\nz\r\n\" id=\"DejaVuSans-97\"/>\r\n <path d=\"M 45.40625 27.984375 \r\nQ 45.40625 37.75 41.375 43.109375 \r\nQ 37.359375 48.484375 30.078125 48.484375 \r\nQ 22.859375 48.484375 18.828125 43.109375 \r\nQ 14.796875 37.75 14.796875 27.984375 \r\nQ 14.796875 18.265625 18.828125 12.890625 \r\nQ 22.859375 7.515625 30.078125 7.515625 \r\nQ 37.359375 7.515625 41.375 12.890625 \r\nQ 45.40625 18.265625 45.40625 27.984375 \r\nz\r\nM 54.390625 6.78125 \r\nQ 54.390625 -7.171875 48.1875 -13.984375 \r\nQ 42 -20.796875 29.203125 -20.796875 \r\nQ 24.46875 -20.796875 20.265625 -20.09375 \r\nQ 16.0625 -19.390625 12.109375 -17.921875 \r\nL 12.109375 -9.1875 \r\nQ 16.0625 -11.328125 19.921875 -12.34375 \r\nQ 23.78125 -13.375 27.78125 -13.375 \r\nQ 36.625 -13.375 41.015625 -8.765625 \r\nQ 45.40625 -4.15625 45.40625 5.171875 \r\nL 45.40625 9.625 \r\nQ 42.625 4.78125 38.28125 2.390625 \r\nQ 33.9375 0 27.875 0 \r\nQ 17.828125 0 11.671875 7.65625 \r\nQ 5.515625 15.328125 5.515625 27.984375 \r\nQ 5.515625 40.671875 11.671875 48.328125 \r\nQ 17.828125 56 27.875 56 \r\nQ 33.9375 56 38.28125 53.609375 \r\nQ 42.625 51.21875 45.40625 46.390625 \r\nL 45.40625 54.6875 \r\nL 54.390625 54.6875 \r\nz\r\n\" id=\"DejaVuSans-103\"/>\r\n </defs>\r\n <use xlink:href=\"#DejaVuSans-85\"/>\r\n <use x=\"73.193359\" xlink:href=\"#DejaVuSans-115\"/>\r\n <use x=\"125.292969\" xlink:href=\"#DejaVuSans-101\"/>\r\n <use x=\"186.816406\" xlink:href=\"#DejaVuSans-114\"/>\r\n <use x=\"227.929688\" xlink:href=\"#DejaVuSans-115\"/>\r\n <use x=\"280.029297\" xlink:href=\"#DejaVuSans-32\"/>\r\n <use x=\"311.816406\" xlink:href=\"#DejaVuSans-97\"/>\r\n <use x=\"373.095703\" xlink:href=\"#DejaVuSans-103\"/>\r\n <use x=\"436.572266\" xlink:href=\"#DejaVuSans-101\"/>\r\n </g>\r\n </g>\r\n </g>\r\n </g>\r\n <defs>\r\n <clipPath id=\"p5e83eaccf1\">\r\n <rect height=\"466.56\" width=\"1127.52\" x=\"75.340625\" y=\"22.318125\"/>\r\n </clipPath>\r\n </defs>\r\n</svg>\r\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAABLkAAAICCAYAAAAj5h9BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7p0lEQVR4nO3de5hVdd03/vcwo0KgDiKOnAkYQAFFQSV79PGAGKmQecBD2mMmd6gPeecBPOWxkDykpmKPilqpUai3h0wrj6SYlsfUmxvFAyKijkIBIsrM749+7asJBJQZNktfr+va1zVrfb97fT9rvmvP3vs9a69dMX/+/IYAAAAAQIG1KHcBAAAAALCmhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAECZVFdXZ9asWY3WTZgwIaNHjy5TRQAAxSXkAgD4jPvoo4/KXQIAQLMTcgEArKPq6uoyatSodO3aNd27d8/w4cNTX1+fJJk7d24OO+yw9OzZM1tttVWuvPLK0v0mTJiQww8/PKNHj06XLl1y44035i9/+Ut22WWXdOnSJbW1tTnllFNWOOb8+fMzatSo9OzZM926dcuoUaMyZ86cUvsrr7yS4cOHp3Pnzhk5cmROOOGERmeePf744xk2bFi6du2aL3/5y5k2bVoz/XYAABoTcgEArKMuu+yydOzYMS+99FJmzpyZ008/PRUVFamvr89BBx2U/v3754UXXsjtt9+eSZMm5d577y3d96677sqIESPy6quv5oADDsj48ePzne98J7Nnz86TTz6Zfffdd4Vj1tfX55BDDsmzzz6bv/71r2nZsmVOPPHEUvtRRx2VQYMGZdasWRk/fnymTJlSanvjjTdy4IEH5oQTTsgrr7ySc889N4cffnjeeeed5vslAQD8/4RcAADrqKqqqrz55puZPXt21ltvvey4446pqKjIE088kbq6uowbNy7rr79+unfvnm9+85u5+eabS/fdbrvtsvfee6dFixZp1apVqqqqMmvWrNTV1aVNmzbZbrvtVjjmJptskpEjR+YLX/hCNtxwwxx//PF5+OGHkySzZ8/OE088kVNOOSXrr79+vvSlL2X48OGl+/7qV7/KHnvskWHDhqVFixbZdddds8022+R3v/td8/6iAAAi5AIAKJvKysp8+OGHjdZ99NFHqaqqSpKMHTs2PXr0yL777putt946P/7xj5P8I2yaO3duunbtWrpddNFFefvtt0vb6dy5c6PtXnbZZXnppZey3XbbZdddd83dd9+9wpoWL16c4447Lv3790+XLl2y1157ZcGCBVm2bFnefPPNtG3bNl/4whdK/Tt16lT6efbs2bntttsa1fXoo49m3rx5a/aLAgBYDVXlLgAA4POqc+fOee2119KnT5/SuldffTU9e/ZMkmy44Yb5wQ9+kB/84Ad5/vnnM2LEiGy77bbp1KlTunXrlieeeOJjt11RUdFouWfPnrnmmmtSX1+fO+64I9/85jcza9astG7dulG/yy67LDNnzsy9996bmpqaPPPMM9l5553T0NCQmpqavPfee1m8eHEp6PrX63V16tQpo0aNyqWXXrrGvxsAgE/KmVwAAGXy9a9/PRdccEHmzJmT+vr6PPDAA7n77rszcuTIJMndd9+dWbNmpaGhIRtttFEqKytTUVGRQYMGpU2bNrn44ovz/vvvZ9myZXn++edXGnpNmTIl77zzTlq0aJGNN944SdKixfIvBRcuXJhWrVpl4403znvvvZeJEyeW2rp27Zptttkm5513XpYuXZrHHnus0RlhBx54YO6+++7ce++9WbZsWZYsWZJp06Y1CsIAAJqLkAsAoExOOumkbL/99vnKV76S7t275/vf/37+3//7f9lyyy2TJC+99FJGjhyZTp06ZdiwYTnyyCOz8847p7KyMlOmTMmzzz6brbfeOj169MjYsWPzt7/97WPHuvfeezNkyJB06tQp48ePzzXXXJNWrVot12/MmDF5//3307NnzwwdOjRDhw5t1H7VVVfl8ccfT48ePXLuuedm3333zfrrr5/kH2em3XjjjbnwwgvTs2fP9OvXLz/5yU9K3wgJANCcKubPn99Q7iIAACimI444IrW1tTnllFPKXQoA8DnnTC4AAFbbE088kZdffjn19fX5wx/+kLvuuit77bVXucsCAHDheQAAVt+8efNy2GGH5d13303Hjh1z4YUXZuutty53WQAAPq4IAAAAQPH5uCIAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3LBapo5c2a5S6CMzP/nm/nHMfD5Zv4/38z/55v5/3wz/8Uj5AIAAACg8IRcAAAAABSekAsAAACAwqsqdwFFtE2fr5W7BNbAkzP+q9wlAAAAAE3MmVwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4ZU95Bo1alTGjBlT7jIAAAAAKLBVhlx77bVXTjzxxOXW33DDDenUqVOzFNVUrrvuuuy9997p2rVrqqur8+qrry7X58UXX8whhxySHj16pHPnzhk6dGj+8Ic/lKFaAAAAAD6tsp/J1RQ+/PDDFa5fvHhxdtttt4wfP/5j7ztq1Kh88MEHue222/LQQw9lyJAhOeSQQ/Lyyy83V7kAAAAANLEmC7nGjBmTUaNGZdKkSdliiy3SrVu3HH300Vm8eHGpz+LFizNmzJh06tQptbW1ufDCC5fbztKlS3PGGWdkyy23TIcOHbLrrrvm3nvvLbVPmzYt1dXV+d3vfpfddtst7du3b9T+r44++uh873vfy5e+9KUVttfV1eWll17Kd7/73QwYMCA9evTImWeemY8++ijPPPPMGv5GAAAAAFhbmvRMrunTp+eFF17If/3Xf+Xaa6/NnXfemSuvvLLUfvrpp+eBBx7Iz372s9x222155pln8sgjjzTaxjHHHJOHH344V111VaZPn56DDz44Bx10UJ599tlG/c4888ycdtppefzxxzN48OBPVe8mm2ySPn36ZMqUKVm4cGGWLVuW6667Lm3atMkOO+zwqbYJAAAAwNpX1ZQb23DDDfPjH/84lZWV6dOnT772ta/lwQcfzPe+970sXLgwP//5z3PZZZdl9913T5Jcfvnl2XLLLUv3f/nllzN16tQ888wz6dKlS5Jk9OjReeCBB3Ldddc1OvNr3Lhx2W233dao3oqKitx66635xje+kS5duqRFixZp27Ztpk6dms0333yNtg0AAADA2tOkIVefPn1SWVlZWt58883z5z//Ock/AqylS5dm++23L7W3adMm/fr1Ky0//fTTaWhoyJAhQxpt94MPPsjOO+/caN0222yzxvU2NDTk+OOPzyabbJLf/va3admyZX7+85/n8MMPz3333ZeOHTuu8RgAAAAANL9VhlwbbrhhFixYsNz6BQsWZKONNmq0br311mu0XFFRkYaGhtUupr6+PhUVFbnvvvuW21bLli0bLbdu3Xq1t/txHnroodx99915+eWXU11dnSQZOHBg7r///txwww0r/FZJAAAAANY9qwy5amtr8/vf/z4NDQ2pqKgorX/66afTq1ev1R7oi1/8YtZbb708/vjj6d69e5Jk0aJFef7550vLW221VRoaGjJv3rzlztxqDv+8KH6LFo0vTdaiRYvU19c3+/gAAAAANI1VhlxHHnlkrrrqqpx00kk5/PDD07Jly/zud7/LzTffnJtuumm1B2rTpk0OO+ywnHnmmdl0002z+eab50c/+lGjMKlXr1458MADc/TRR+cHP/hBtt5667z33nv54x//mG7dumXEiBGfaOfmzZuXefPm5cUXX0ySzJgxIwsWLEiXLl3Stm3bbL/99mnbtm2OOeaYnHTSSWnVqlWuv/76vPLKK9lzzz0/0VgAAAAAlM8qQ67u3bvnrrvuyrnnnpuvf/3r+eCDD1JbW5vrrrsue+yxxyca7JxzzsmiRYvyjW98I61atcro0aNLZ1P90+WXX54LLrgg3//+9/PGG2+kbdu22XbbbbPTTjt9sj1LMnny5EycOLG0fOCBB5bGOPTQQ9OuXbvcfPPNOeecczJixIh89NFH6d27d2644YYMHDjwE48HAAAAQHlUzJ8/f/UvmkWSZJs+Xyt3CayBJ2f816e638yZM1NbW9u0xVAY5v/zzfzjGPh8M/+fb+b/8838f76Z/+JpseouAAAAALBuE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4VWVu4AienLGf5W7BAAAAAD+hTO5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABReVbkLKKLDtz6j3CUAAHxqP3v6rHKXAADQ5JzJBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwmvWkOvhhx/OQQcdlC222CLV1dW54YYbluuzcOHCnHjiidlyyy2z+eabZ/Dgwbn88svXeOxXX301xx57bLbeeutsvvnm2XrrrXPWWWfl/fffX2H/urq6Up11dXVrPD4AAAAAa09Vc2580aJF2XLLLXPwwQfnO9/5zgr7nHrqqXnggQdy5ZVXplu3bnnkkUfy3e9+N+3atctBBx30qceeOXNmli1blosuuig9e/bMjBkzctxxx+Xdd9/NJZdcslz/o48+OgMGDMjcuXM/9ZgAAAAAlEeznsk1bNiwfP/738/IkSPTosWKh3rssccyatSo7LzzzunWrVsOPvjgDB48OH/5y1/WaOyhQ4dm0qRJ2X333dO9e/fsueeeOf7443P77bcv13fSpEl5//33c8wxx6zRmAAAAACUR9mvyTVkyJDcfffdef3115Mkf/rTn/LXv/41u+++e5OP9fe//z3V1dWN1j399NO55JJLcuWVV35sEAcAAADAuq3sqc7EiRPTv3//9O/fP5tuumn22muvnHnmmfnKV77SpOO89tpr+clPfpIjjzyytG7RokU58sgjM3HixHTs2LFJxwMAAABg7Sl7yPXTn/40jz32WG666aY88MAD+eEPf5jTTz89f/jDH1bYf/bs2enUqVPpduGFF65yjLfeeiv7779/dt1110YfSRw3blyGDBmSkSNHNtn+AAAAALD2NeuF51fl/fffz9lnn53rrrsuw4cPT5L0798/zz77bH7yk59k6NChy92nQ4cOmTZtWmm5bdu2Kx1j3rx5GTFiRLbYYov89Kc/TUVFRantwQcfzJw5c3LTTTclSRoaGpIkvXv3znHHHZfTTz99jfcRAAAAgOZX1pDrww8/zIcffpjKyspG6ysrK1NfX7/C+1RVVaVHjx6rtf0333wz++yzT/r27ZtrrrkmVVWNd/fWW2/N0qVLS8tPPPFEjj322Nx5553p2bPnJ9wbAAAAAMqlWUOuhQsXZtasWUmS+vr6vP7663nmmWfStm3bdOnSJRtttFG+/OUv56yzzkrr1q3TpUuXPPzww/nlL3+Zs846a43Gnjt3bvbee+9svvnmmTBhQurq6kptm266aSorK9OrV69G9/lnn969e6ddu3ZrND4AAAAAa0+zhlxPPvlk9tlnn9LyhAkTMmHChBx88MGZNGlSkmTy5Mk566yzMnr06Lz33nvp0qVLTj311IwePXqNxr7vvvvy0ksv5aWXXkr//v0btT399NPp1q3bGm0fAAAAgHVHs4ZcO+20U+bPn7/SPjU1NbniiiuafOxDDz00hx566Ce6z+rUCwAAAMC6p+zfrggAAAAAa0rIBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAovKpyF1BEP3v6rHKXQBnMnDkztbW15S6DMjH/n2/mH8cAAMC6z5lcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4VWVu4AimrDrD8tdAgAAAMBKnXz/KeUuYa1yJhcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeM0acl100UXZdddd06VLl/Ts2TOjRo3K888/36jPmDFjUl1d3eg2dOjQNR67vr4+Bx10UPr375+ampr06dMno0ePzhtvvLHC/nV1ddliiy1SXV2durq6NR4fAAAAgLWnWUOuP/7xjznyyCNzzz335Pbbb09VVVW+9rWv5b333mvUb5dddsmMGTNKt1//+tdNMv7OO++ca6+9No8//nh+9rOf5ZVXXsk3vvGNFfY9+uijM2DAgCYZFwAAAIC1q6o5N37LLbc0Wv7pT3+arl275tFHH83w4cNL6zfYYIPU1NQ06dgtWrTI0UcfXVru2rVrjjvuuBxyyCFZsmRJWrZsWWqbNGlS3n///Rx//PH53e9+16R1AAAAAND81uo1uRYuXJj6+vpUV1c3Wj99+vT06tUrgwYNytixY/P22283+djvvfdefv3rX2fw4MGNAq6nn346l1xySa688sq0aOESZQAAAABFtFZTnfHjx2fAgAHZfvvtS+uGDh2aK6+8MrfddlvOPffc/OUvf8mIESPywQcfNMmYZ5xxRjp27JgvfvGLef311zNlypRS26JFi3LkkUdm4sSJ6dixY5OMBwAAAMDat9ZCrlNOOSWPPvpofv7zn6eysrK0fr/99stXv/rV9OvXL8OHD8/UqVMzc+bM3HPPPSvczuzZs9OpU6fS7cILL1zpuGPHjs1DDz2UW2+9NZWVlRk9enQaGhqSJOPGjcuQIUMycuTIpttRAAAAANa6Zr0m1z+dfPLJueWWW3LHHXeke/fuK+3boUOHdOzYMbNmzfrY9mnTppWW27Ztu9LttWvXLu3atUuvXr3Su3fv9OvXL9OnT8+OO+6YBx98MHPmzMlNN92UJKXwq3fv3jnuuONy+umnf4K9BAAAAKBcmj3kGjduXG699dbccccd6d279yr719XVZe7cuR97Ifqqqqr06NHjU9VSX1+fJFm6dGmS5NZbby39nCRPPPFEjj322Nx5553p2bPnpxoDAAAAgLWvWUOuE044IVOmTMkvfvGLVFdXZ968eUmS1q1bp02bNlm4cGHOO++8jBgxIjU1NXnttddy9tlnp3379tl7773XaOzHHnssTz/9dIYMGZKNN944L7/8cn74wx+ma9euGTJkSJKkV69eje5TV1eX5B9ncrVr126NxgcAAABg7WnWkOvqq69OkuWueTVu3LicfPLJqayszPPPP59f/vKXWbBgQWpqarLTTjvl2muvzYYbbrhGY7ds2TK33XZbfvjDH2bx4sWpqanJ0KFDM3ny5EbfrggAAABA8VXMnz+/odxFFM2EXX9Y7hIAAAAAVurk+08pdwlr1Vr7dkUAAAAAaC5CLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACi8ivnz5zeUuwgogpkzZ6a2trbcZVAm5v/zzfzjGPh8M/+fb+b/8838f76Z/+JxJhcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwqsqdwFF9NtRE8tdAmXyYrkLoKzM/+eb+ccxUH7Dp4wrdwkAwDrMmVwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACi8Zg25rrrqquy4447p0qVLunTpkj322CP33HNPoz5jxoxJdXV1o9vQoUObtI4lS5bky1/+cqqrq/Pkk0+usE9dXV222GKLVFdXp66urknHBwAAAKB5VTXnxjt27JizzjorPXv2TH19fW666aYceuiheeCBB9K/f/9Sv1122SU//elPS8vrr79+k9Zx+umnp1OnTnnuuec+ts/RRx+dAQMGZO7cuU06NgAAAADNr1nP5Nprr72yxx57pEePHunVq1dOP/30tGnTJo8//nijfhtssEFqampKt7Zt2zZZDb/5zW8ybdq0nHPOOR/bZ9KkSXn//fdzzDHHNNm4AAAAAKw9a+2aXMuWLcvNN9+cRYsWZfvtt2/UNn369PTq1SuDBg3K2LFj8/bbbzfJmHPmzMnxxx+fq666Ki1btlxhn6effjqXXHJJrrzyyrRo4RJlAAAAAEXUrB9XTJLnnnsuw4YNy5IlS9K6dev84he/SL9+/UrtQ4cOzT777JNu3brltddey7nnnpsRI0bkgQceyAYbbPCpx122bFmOOuqoHHPMMRkwYEBeffXV5fosWrQoRx55ZCZOnJiOHTvmpZde+tTjAQAAAFA+zR5y1dbWZtq0afnb3/6W2267LWPGjMmdd96ZLbfcMkmy3377lfr269cvAwcOzIABA3LPPfdkxIgRy21v9uzZGTJkSGn5e9/7Xo4//vjl+l144YVZf/31c+yxx35sbePGjcuQIUMycuTINdlFAAAAAMqs2UOu9ddfPz169EiSDBw4ME888USuuOKKXHbZZSvs36FDh3Ts2DGzZs362PZp06aVlj/u+l0PPvhgpk+fnk033bTR+qFDh+brX/96rrrqqjz44IOZM2dObrrppiRJQ0NDkqR379457rjjcvrpp3+ynQUAAACgLJo95Pp39fX1Wbp06ce219XVZe7cuampqVlhe1VVVSk0W5nLL788ixcvLi2/+eabpXBrhx12SJLceuutjWp54okncuyxx+bOO+9Mz549V3eXAAAAACizZg25zjzzzAwbNiydOnXKwoULM3Xq1Pzxj3/Mr371qyTJwoULc95552XEiBGpqanJa6+9lrPPPjvt27fP3nvvvUZjd+/evdFy69atkyRf/OIX06lTpyRJr169GvWpq6tL8o8zudq1a7dG4wMAAACw9jRryDVv3ryMHj06b731VjbaaKP069cvU6dOze67754kqayszPPPP59f/vKXWbBgQWpqarLTTjvl2muvzYYbbticpQEAAADwGdKsIdekSZNW2t6qVavccsstzVlCSbdu3TJ//vyV9tlpp51W2QcAAACAdU+LchcAAAAAAGtKyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFV1XuAopo+JRx5S6BMpg5c2Zqa2vLXQZlYv4/38w/jgEAgHWfM7kAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFF5VuQsootdPOKvcJVAGrZK8Xu4iKJu1Nf+dLzhjLYwCAADw2eNMLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFN5aC7kuuuiiVFdX58QTT2y0fsyYMamurm50Gzp0aJOOvWTJknz5y19OdXV1nnzyyUZtDz74YIYNG5bOnTund+/eOeOMM/LRRx816fgAAAAANK+1EnI9/vjjue6669KvX78Vtu+yyy6ZMWNG6fbrX/+6Scc//fTT06lTp+XWP/vssznggAOyyy675KGHHsrkyZPz29/+NmeeeWaTjg8AAABA82r2kGvBggU56qijctlll6W6unqFfTbYYIPU1NSUbm3btm2y8X/zm99k2rRpOeecc5Zru/XWW9OnT5+ccsop6dGjR/7X//pfOeuss3L11Vfn73//e5PVAAAAAEDzavaQ67jjjsvIkSOz8847f2yf6dOnp1evXhk0aFDGjh2bt99+u0nGnjNnTo4//vhcddVVadmy5XLtH3zwwXLrW7VqlSVLluSpp55qkhoAAAAAaH7NGnJdf/31mTVrVk477bSP7TN06NBceeWVue2223LuuefmL3/5S0aMGJEPPvhgjcZetmxZjjrqqBxzzDEZMGDACvvsvvvu+fOf/5wpU6bko48+yhtvvJGJEycmSebNm7dG4wMAAACw9jRbyDVz5sycffbZufrqq7Peeut9bL/99tsvX/3qV9OvX78MHz48U6dOzcyZM3PPPfessP/s2bPTqVOn0u3CCy9cYb8LL7ww66+/fo499tiPHXu33XbLOeeckxNPPDE1NTUZPHhwhg0bliRp0cIXTwIAAAAURVVzbfixxx5LXV1dhgwZUlq3bNmyPPLII5k8eXLeeOONbLDBBsvdr0OHDunYsWNmzZq1wu126NAh06ZNKy1/3PW7HnzwwUyfPj2bbrppo/VDhw7N17/+9Vx11VVJkmOPPTbHHHNM3nzzzVRXV+e1117LWWedle7du3/SXQYAAACgTJot5Nprr72yzTbbNFp3zDHHpGfPnvne976X9ddff4X3q6ury9y5c1NTU7PC9qqqqvTo0WOV419++eVZvHhxafnNN98shVs77LBDo74VFRXp0KFDkmTq1Knp3Llztt5661WOAQAAAMC6odlCrurq6uW+TfELX/hC2rZtmy233DJJsnDhwpx33nkZMWJEampq8tprr+Xss89O+/bts/fee6/R+P9+Jlbr1q2TJF/84hfTqVOn0vpLL700u+++e1q0aJE77rgjF198ca699tpUVlau0fgAAAAArD3NFnKtjsrKyjz//PP55S9/mQULFqSmpiY77bRTrr322my44YZrpYbf//73ueCCC7J06dL0798/N954Y/bYY4+1MjYAAAAATWOthly/+c1vGi23atUqt9xyy1oZu1u3bpk/f/5y6++44461Mj4AAAAAzcdXCAIAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhVZW7gCLqfMEZ5S6BMpg5c2Zqa2vLXQZlYv4BAADWbc7kAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACq+q3AUU0ZKf/aDcJVAGXZIsmV7uKljbWh5+arlLAAAAYDU4kwsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAovGYNuSZMmJDq6upGt969ezfq09DQkAkTJqRv377ZfPPNs9dee+WFF15okvH/fezq6upMnjy51P7qq6+usM8f/vCHJhkfAAAAgLWjqrkHqK2tzZ133llarqysbNR+ySWX5PLLL8/ll1+e2tra/OhHP8q+++6bxx9/PBtuuOEaj3/ppZdmzz33LC1vtNFGy/W5+eab079//9Jy27Zt13hcAAAAANaeZg+5qqqqUlNTs8K2hoaGTJo0Kccdd1xGjhyZJJk0aVJqa2szderUHHHEEWs8/sYbb/yx4//TJptssso+AAAAAKy7mv2aXK+88kr69u2brbbaKt/61rfyyiuvlNpeffXVzJs3L7vttltpXatWrbLjjjvmT3/6U5OMP378+PTo0SO77rprJk+enPr6+uX6HHbYYenVq1f23HPP3HbbbU0yLgAAAABrT7OeyTV48OBcccUVqa2tzTvvvJPzzz8/w4YNy6OPPppNNtkk8+bNS5K0b9++0f3at2+fuXPnrvH4p5xySnbaaae0bt06Dz74YE477bTU1dXlxBNPTJK0adMm55xzToYMGZKqqqrcddddOeKIIzJp0qSMGjVqjccHAAAAYO1o1pBrjz32aLQ8ePDgDBw4MDfeeGOOPfbYT7XNRx55JAcccEBp+cc//nEOPPDAFfY96aSTSj9vtdVWqa+vz4UXXlgKudq1a5f/+3//b6nPNttsk3fffTeXXHKJkAsAAACgQJr9mlz/qk2bNunbt29mzZqVJKXrYL399tvp0qVLqd/bb7+dzTbbbIXb2GabbTJt2rTS8r+fBbYygwYNyt/+9re89dZbH7v9QYMG5YYbbljtbQIAAABQfs1+Ta5/tWTJksycObMUbnXr1i01NTW5//77G/WZPn16dthhhxVuo1WrVunRo0fp9km+gfHZZ59Ny5Yts/HGG6+0j4vQAwAAABRLs57Jddppp+UrX/lKOnfuXLom1+LFi3PwwQcnSSoqKjJmzJhcdNFFqa2tTa9evXLBBRekdevW2X///ddo7N/+9rd56623st1226VVq1aZNm1aJkyYkG9+85vZYIMNkiQ33nhj1ltvvWy11VZp0aJF7r777lx99dU588wz13TXAQAAAFiLmjXkeuONN/Ltb387dXV12XTTTTN48OD8/ve/T9euXUt9vvvd7+b999/PiSeemPnz52fQoEG55ZZbPtEZWiuy3nrr5eqrr86pp56a+vr6dO/ePSeffHKOOuqoRv0uuOCCzJ49O5WVlenZs2cuu+wy1+MCAAAAKJhmDbkmT568yj4VFRU5+eSTc/LJJzfp2EOHDs3QoUNX2ueQQw7JIYcc0qTjAgAAALD2rdVrcgEAAABAcxByAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOFVlbuAImp5+KnlLoEymDlzZmpra8tdBgAAALACzuQCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhV5S6giBr+elO5S6AMeiVp+Oufy13GOqGi/8HlLgEAAAAacSYXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwhFwAAAACFJ+QCAAAAoPCEXAAAAAAUnpALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKr1Ah14QJE1JdXd3o1rt370Z9XnzxxXzjG99I165d06FDh+y8886ZMWNGmSoGAAAAYG2oKncBn1RtbW3uvPPO0nJlZWXp51deeSV77rlnDjrooNx+++2prq7O//zP/6R169Yfu70BAwbkiiuuyE477dSsdQMAAADQfAoXclVVVaWmpmaFbeeee2522223/OAHPyit6969+1qqDAAAAIByKdTHFZN/nK3Vt2/fbLXVVvnWt76VV155JUlSX1+fu+++O3369Ml+++2Xnj17Ztddd80tt9xS3oIBAAAAaHaFCrkGDx6cK664IlOnTs2ll16aefPmZdiwYXn33Xfz9ttvZ+HChbnooouy66675tZbb81+++2Xo446Kvfcc0+5SwcAAACgGRXq44p77LFHo+XBgwdn4MCBufHGG7PffvslSb761a/m2GOPTZJstdVWeeqpp3LVVVdlzz33TJLsv//+mT59emkbixcvzgEHHNDo2l5z5sxp7l0BAAAAoAkVKuT6d23atEnfvn0za9astGvXLlVVVenTp0+jPr179270kcVLL700S5YsKS3vvffeOfPMMzN48OC1VjcAAAAATavQIdeSJUsyc+bM7LTTTll//fWz7bbbZubMmY36vPjii+nSpUtpuWPHjo3aKysr06FDh/To0WOt1AwAAABA0ytUyHXaaaflK1/5Sjp37px33nkn559/fhYvXpyDDz44STJ27NgcccQR2XHHHbPzzjtn2rRpueWWW3LDDTeUuXIAAAAAmlOhQq433ngj3/72t1NXV5dNN900gwcPzu9///t07do1yT8+enjxxRfnoosuyvjx49OjR49ceeWVpetxAQAAAPDZVKiQa/Lkyavsc+ihh+bQQw9d7W0+++yza1ISAAAAAOuAFuUuAAAAAADWlJALAAAAgMITcgEAAABQeEIuAAAAAApPyAUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwhFwAAAAAFJ6QCwAAAIDCE3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4Qi4AAAAACq+q3AUUUUX/g8tdAmUwc+bM1NbWlrsMAAAAYAWcyQUAAABA4Qm5AAAAACg8IRcAAAAAhSfkAgAAAKDwKubPn99Q7iIAAAAAYE04kwsAAACAwhNyAQAAAFB4Qi4AAAAACk/IBQAAAEDhCbkAAAAAKDwh12q6+uqrs9VWW6Wmpib/+3//7zzyyCPlLok1dNFFF2XXXXdNly5d0rNnz4waNSrPP/98oz5jxoxJdXV1o9vQoUMb9fnggw9y4oknpkePHunYsWMOOuigzJkzZ23uCp/ChAkTlpvb3r17l9obGhoyYcKE9O3bN5tvvnn22muvvPDCC422MX/+/IwePTpdu3ZN165dM3r06MyfP38t7wmfxoABA5ab/+rq6hx44IFJVn18JKt3jLDuePjhh3PQQQdliy22SHV1dW644YZG7U31mH/uuefy1a9+NZtvvnm22GKLTJw4MQ0Nvsi6nFY29x9++GHOOOOM7LjjjunYsWP69OmTb3/725k9e3ajbey1117L/U341re+1aiP54R116oe/031em/27NkZNWpUOnbsmB49euSkk07K0qVLm33/WLlVzf+KXg9UV1fnhBNOKPXxnqCYVuf9nuf/zx4h12q45ZZbMn78+Bx//PF56KGHsv322+eAAw5Y7gUQxfLHP/4xRx55ZO65557cfvvtqaqqyte+9rW89957jfrtsssumTFjRun261//ulH7ySefnDvuuCPXXHNN7rrrrvz973/PqFGjsmzZsrW5O3wKtbW1jeb2X8PrSy65JJdffnkmTpyY++67L+3bt8++++6bv//976U+3/72t/PMM89k6tSpmTp1ap555pn8x3/8Rzl2hU/o/vvvbzT3Dz74YCoqKvK1r32t1Gdlx0eyescI645FixZlyy23zHnnnZdWrVot194Uj/m//e1v2XfffbPZZpvlvvvuy3nnnZef/OQnueyyy9bKPrJiK5v7xYsX5+mnn84JJ5yQBx98MDfeeGPmzJmT/fffPx999FGjvoceemijvwk//vGPG7V7Tlh3rerxn6z5671ly5Zl1KhRWbhwYe66665cc801uf3223Pqqac2+/6xcqua/3+d9xkzZuSXv/xlkjR6TZB4T1BEq/N+z/P/Z0/F/PnzxYursPvuu6dfv3659NJLS+u23XbbjBw5MmeccUYZK6MpLVy4MF27ds0NN9yQ4cOHJ/nHf23efffdTJkyZYX3WbBgQXr16pXLL7+8dAbI66+/ngEDBmTq1KnZfffd11r9fDITJkzI7bffnunTpy/X1tDQkL59++aoo44q/Rfv/fffT21tbc4555wcccQRmTFjRnbYYYfcfffdGTJkSJJk+vTpGT58eB5//PHU1tau1f1hzVxwwQW59NJLM2PGjLRq1Wqlx0eyescI665OnTrlRz/6UQ499NAkTfeYv+aaa3LmmWfmf/7nf0pvpM4///xMnjw5zz//fCoqKsqzw5T8+9yvyH//939nyJAhefjhh9OvX78k/ziTa8stt8z555+/wvt4TiiOFR0DTfF67/e//30OPPDAPPvss+ncuXOSZMqUKRk7dmxmzpyZjTbaqPl3jlVanb8BY8eOzSOPPJI///nPpXXeE3w2/Pv7Pc//n03O5FqFpUuX5qmnnspuu+3WaP1uu+2WP/3pT2WqiuawcOHC1NfXp7q6utH66dOnp1evXhk0aFDGjh2bt99+u9T21FNP5cMPP2x0fHTu3Dl9+vRxfBTAK6+8kr59+2arrbbKt771rbzyyitJkldffTXz5s1rNK+tWrXKjjvuWJrXxx57LG3atMkOO+xQ6jNkyJC0bt3a3BdMQ0NDfv7zn2fUqFGN/sP7ccdHsnrHCMXRVI/5xx57LF/60pcaHUe777575s6dm1dffXUt7Q1r6p//vf/31wM333xzevTokSFDhuS0005r9F9+zwnFt6av9x577LH06dOnFHAl/3j8f/DBB3nqqafW2n6wZhYuXJhbbrkl3/zmN5dr856g+P79/Z7n/8+mqnIXsK6rq6vLsmXL0r59+0br27dvn7feeqtMVdEcxo8fnwEDBmT77bcvrRs6dGj22WefdOvWLa+99lrOPffcjBgxIg888EA22GCDvPXWW6msrEy7du0abcvxse4bPHhwrrjiitTW1uadd97J+eefn2HDhuXRRx/NvHnzkmSFj/u5c+cmSd566620a9eu0X9mKioqsummm5r7grn//vvz6quv5vDDDy+tW9nxsckmm6zWMUJxNNVj/q233krHjh2X28Y/27p3795cu0ATWbp0aU477bR85StfSadOnUrrDzjggHTp0iWbb755/vu//ztnnXVWnnvuudx6661JPCcUXVO83nvrrbeW+xvSrl27VFZWOgYKZOrUqVm6dGkOPvjgRuu9J/hs+Pf3e57/P5uEXJDklFNOyaOPPpq77747lZWVpfX77bdf6ed+/fpl4MCBGTBgQO65556MGDGiHKXSRPbYY49Gy4MHD87AgQNz4403ZrvttitTVZTD9ddfn2233TYDBgworVvZ8XHssceu7RKBteCjjz7K6NGjs2DBgtx0002N2v7P//k/pZ/79euX7t27Z/fdd89TTz2VgQMHrt1CaXJe7/FP119/fb761a9m0003bbTeMVJ8H/d+j88eH1dchX/+B+ZfT0dNkrfffjubbbZZmaqiKZ188sm5+eabc/vtt68yZe/QoUM6duyYWbNmJUk222yzLFu2LHV1dY36OT6Kp02bNunbt29mzZqVmpqaJFnp436zzTZLXV1do29NaWhoyDvvvGPuC+Ttt9/OXXfdtcKPJfyrfz0+kqzWMUJxNNVjfrPNNlvhNv7Zxrrro48+ypFHHpnnnnsut912WzbZZJOV9t9mm21SWVnZ6PWA54TPjk/zem9Fj/9/fiLEMVAMzzzzTJ588slVviZIvCcomo97v+f5/7NJyLUK66+/fgYOHJj777+/0fr777+/0edyKaZx48aV/uD17t17lf3r6uoyd+7c0h/EgQMHZr311mt0fMyZM6d0gUKKY8mSJZk5c2ZqamrSrVu31NTUNJrXJUuWZPr06aV53X777bNw4cI89thjpT6PPfZYFi1aZO4L5MYbb8wGG2zQ6D+0K/Kvx0eS1TpGKI6mesxvv/32mT59epYsWVLqc//996dDhw7p1q3bWtobPqkPP/wwRxxxRJ577rnccccdpcf5yjz33HNZtmxZqa/nhM+WT/N6b/vtt8+MGTMyZ86cUp/7778/G2ywgbP9CuL6669Pt27dsssuu6yyr/cExbGy93ue/z+bfFxxNRxzzDH5j//4jwwaNCg77LBDJk+enDfffNO3ZxXcCSeckClTpuQXv/hFqqurS5/Jbt26ddq0aZOFCxfmvPPOy4gRI1JTU5PXXnstZ599dtq3b5+99947SbLxxhvnsMMOyxlnnJH27dunbdu2OfXUU9OvX7/VeoKkfP55zZXOnTuXrrm0ePHiHHzwwamoqMiYMWNy0UUXpba2Nr169coFF1yQ1q1bZ//990+S9OnTJ0OHDs1//ud/5uKLL06S/Od//mf23HNP36JVEA0NDfnZz36Wr3/962nTpk2jtpUdH0lW6xhh3bJw4cLSf9zr6+vz+uuv55lnnknbtm3TpUuXJnnM77///pk4cWKOPvronHDCCXnxxRdz8cUX56STTvLNSmW0srnv0KFDvvnNb+bJJ5/MTTfdlIqKitLrgY022iitWrXKyy+/nF/96lcZNmxYNtlkk8yYMSOnnXZattpqq9I3bXlOWLet7Bho27Ztk7ze22233bLFFlvkO9/5Ts4999y89957+f73v5/DDz/cNyuW2ar+/ifJ4sWL8+tf/zpjx45d7u+19wTFtar3e031mt/z/7qlYv78+Q2r7sbVV1+dSy65JPPmzcsWW2yRH/7wh/nyl79c7rJYA//+rUn/NG7cuJx88sl5//33c+ihh+aZZ57JggULUlNTk5122imnnnpqo2/O+eCDD3Laaadl6tSpWbJkSXbeeedceOGFjfqw7vnWt76VRx55JHV1ddl0000zePDgnHrqqenbt2+SfwQg5513Xq677rrMnz8/gwYNygUXXJAtt9yytI358+fnpJNOym9/+9skyfDhw/OjH/3oY48t1i0PPfRQRowYkXvvvTeDBg1q1Laq4yNZvWOEdce0adOyzz77LLf+4IMPzqRJk5rsMf/cc8/lhBNOyBNPPJHq6uocccQRGTdunBe5ZbSyuR8/fny23nrrFd7v8ssvz6GHHprXX389o0ePzgsvvJBFixalU6dOGTZsWMaPH5+2bduW+ntOWHet7Bi46KKLmuz13uzZs3PCCSfkoYceSsuWLXPAAQfknHPOyQYbbLBW9pMVW9Xf/yT5xS9+ke9+97v561//mg4dOjTq5z1Bca3q/V7SdK/5Pf+vO4RcAAAAABSea3IBAAAAUHhCLgAAAAAKT8gFAAAAQOEJuQAAAAAoPCEXAAAAAIUn5AIAAACg8IRcAAAAABSekAsAAACAwhNyAQAAAFB4/x9nBGN4jbN+fgAAAABJRU5ErkJggg=="
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 8,
"source": [
"# Plot gender of users\r\n",
"gender_counts = users['gender'].value_counts()\r\n",
"colors1 = ['lightblue', 'pink']\r\n",
"pie = go.Pie(labels=gender_counts.index,\r\n",
" values=gender_counts.values,\r\n",
" marker=dict(colors=colors1),\r\n",
" hole=0.5)\r\n",
"layout = go.Layout(title='Gender Users', font=dict(size=12), legend=dict(orientation='h'))\r\n",
"\r\n",
"fig = go.Figure(data=[pie], layout=layout)\r\n",
"py.iplot(fig)"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<div> <div id=\"0e14f22b-8af8-403c-b734-f957fd2b7c47\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"0e14f22b-8af8-403c-b734-f957fd2b7c47\")) { Plotly.newPlot( \"0e14f22b-8af8-403c-b734-f957fd2b7c47\", [{\"hole\":0.5,\"labels\":[\"Male\",\"Female\"],\"marker\":{\"colors\":[\"lightblue\",\"pink\"]},\"type\":\"pie\",\"values\":[4331,1709]}], {\"font\":{\"size\":12},\"legend\":{\"orientation\":\"h\"},\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"title\":{\"text\":\"Gender Users\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('0e14f22b-8af8-403c-b734-f957fd2b7c47');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
],
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"hole": 0.5,
"labels": [
"Male",
"Female"
],
"marker": {
"colors": [
"lightblue",
"pink"
]
},
"type": "pie",
"values": [
4331,
1709
]
}
],
"layout": {
"font": {
"size": 12
},
"legend": {
"orientation": "h"
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Gender Users"
}
}
}
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 9,
"source": [
"# Merge reviews, movie and user dataset\r\n",
"final_df = reviews.merge(movies, on='movieId', how='left').merge(users, on='userId', how='left')\r\n",
"print('final_df shape:', final_df.shape)\r\n",
"final_df.head()"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"final_df shape: (1000209, 9)\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" userId movieId rating title \\\n",
"0 1 1193 5 One Flew Over the Cuckoo's Nest (1975) \n",
"1 1 661 3 James and the Giant Peach (1996) \n",
"2 1 914 3 My Fair Lady (1964) \n",
"3 1 3408 4 Erin Brockovich (2000) \n",
"4 1 2355 5 Bug's Life, A (1998) \n",
"\n",
" genres release_year gender age occupation \n",
"0 Drama 1975 Female Under 18 K-12 student \n",
"1 Animation|Children's|Musical 1996 Female Under 18 K-12 student \n",
"2 Musical|Romance 1964 Female Under 18 K-12 student \n",
"3 Drama 2000 Female Under 18 K-12 student \n",
"4 Animation|Children's|Comedy 1998 Female Under 18 K-12 student "
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>userId</th>\n",
" <th>movieId</th>\n",
" <th>rating</th>\n",
" <th>title</th>\n",
" <th>genres</th>\n",
" <th>release_year</th>\n",
" <th>gender</th>\n",
" <th>age</th>\n",
" <th>occupation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>1193</td>\n",
" <td>5</td>\n",
" <td>One Flew Over the Cuckoo's Nest (1975)</td>\n",
" <td>Drama</td>\n",
" <td>1975</td>\n",
" <td>Female</td>\n",
" <td>Under 18</td>\n",
" <td>K-12 student</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>661</td>\n",
" <td>3</td>\n",
" <td>James and the Giant Peach (1996)</td>\n",
" <td>Animation|Children's|Musical</td>\n",
" <td>1996</td>\n",
" <td>Female</td>\n",
" <td>Under 18</td>\n",
" <td>K-12 student</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>914</td>\n",
" <td>3</td>\n",
" <td>My Fair Lady (1964)</td>\n",
" <td>Musical|Romance</td>\n",
" <td>1964</td>\n",
" <td>Female</td>\n",
" <td>Under 18</td>\n",
" <td>K-12 student</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>3408</td>\n",
" <td>4</td>\n",
" <td>Erin Brockovich (2000)</td>\n",
" <td>Drama</td>\n",
" <td>2000</td>\n",
" <td>Female</td>\n",
" <td>Under 18</td>\n",
" <td>K-12 student</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1</td>\n",
" <td>2355</td>\n",
" <td>5</td>\n",
" <td>Bug's Life, A (1998)</td>\n",
" <td>Animation|Children's|Comedy</td>\n",
" <td>1998</td>\n",
" <td>Female</td>\n",
" <td>Under 18</td>\n",
" <td>K-12 student</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 9
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 10,
"source": [
"final_df[final_df['age'] == '18 - 24']['title'].value_counts()[:10].to_frame()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" title\n",
"American Beauty (1999) 715\n",
"Star Wars: Episode VI - Return of the Jedi (1983) 586\n",
"Star Wars: Episode V - The Empire Strikes Back ... 579\n",
"Matrix, The (1999) 567\n",
"Star Wars: Episode IV - A New Hope (1977) 562\n",
"Braveheart (1995) 544\n",
"Saving Private Ryan (1998) 543\n",
"Jurassic Park (1993) 541\n",
"Terminator 2: Judgment Day (1991) 529\n",
"Men in Black (1997) 514"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>title</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>American Beauty (1999)</th>\n",
" <td>715</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Star Wars: Episode VI - Return of the Jedi (1983)</th>\n",
" <td>586</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Star Wars: Episode V - The Empire Strikes Back (1980)</th>\n",
" <td>579</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Matrix, The (1999)</th>\n",
" <td>567</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Star Wars: Episode IV - A New Hope (1977)</th>\n",
" <td>562</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Braveheart (1995)</th>\n",
" <td>544</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Saving Private Ryan (1998)</th>\n",
" <td>543</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Jurassic Park (1993)</th>\n",
" <td>541</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Terminator 2: Judgment Day (1991)</th>\n",
" <td>529</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Men in Black (1997)</th>\n",
" <td>514</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 10
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 11,
"source": [
"# Print movie / user sum\r\n",
"n_movies = final_df['movieId'].nunique()\r\n",
"n_users = final_df['userId'].nunique()\r\n",
"\r\n",
"print('Number of movies:', n_movies)\r\n",
"print('Number of users:', n_users) "
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Number of movies: 3706\n",
"Number of users: 6040\n"
]
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 12,
"source": [
"# implement SVD with Python SurPRISE, a Python Recommendation Framework\r\n",
"\r\n",
"from surprise import Reader, Dataset, SVD, SVDpp\r\n",
"from surprise import accuracy\r\n",
"\r\n",
"reader = Reader(rating_scale=(1, 5))\r\n",
"dataset = Dataset.load_from_df(final_df[['userId', 'movieId', 'rating']], reader=reader)\r\n",
"\r\n",
"svd = SVD(n_factors=50)\r\n",
"svd_plusplus = SVDpp(n_factors=50)\r\n",
"\r\n",
"# train with SVD\r\n",
"trainset = dataset.build_full_trainset()\r\n",
"svd.fit(trainset)\r\n",
"# train with SVD++, ATTENTION this take a LONG TIME\r\n",
"# svd_plusplus.fit(trainset)\r\n"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<surprise.prediction_algorithms.matrix_factorization.SVD at 0x28803c98790>"
]
},
"metadata": {},
"execution_count": 12
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 15,
"source": [
"# Show titels instead of ids\r\n",
"id_2_names = dict()\r\n",
"for idx, names in zip(movies['movieId'], movies['title']):\r\n",
" id_2_names[idx] = names"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 16,
"source": [
"# function for test set\r\n",
"def Build_Anti_Testset4User(user_id):\r\n",
" \r\n",
" fill = trainset.global_mean\r\n",
" anti_testset = list()\r\n",
" u = trainset.to_inner_uid(user_id)\r\n",
" \r\n",
" # ur == users ratings\r\n",
" user_items = set([item_inner_id for (item_inner_id, rating) in trainset.ur[u]])\r\n",
" \r\n",
" anti_testset += [(trainset.to_raw_uid(u), trainset.to_raw_iid(i), fill) for\r\n",
" i in trainset.all_items() if i not in user_items]\r\n",
" \r\n",
" return anti_testset"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 19,
"source": [
"# Implement Top-X Chart recommender\r\n",
"def TopXRec_SVD(user_id, num_recommender=10, latest=False):\r\n",
" \r\n",
" testSet = Build_Anti_Testset4User(user_id)\r\n",
" predict = svd.test(testSet) # here you can change to SVD++\r\n",
" \r\n",
" recommendation = list()\r\n",
" \r\n",
" for userID, movieID, actualRating, estimatedRating, _ in predict:\r\n",
" intMovieID = int(movieID)\r\n",
" recommendation.append((intMovieID, estimatedRating))\r\n",
" \r\n",
" recommendation.sort(key=lambda x: x[1], reverse=True)\r\n",
" \r\n",
" movie_names = []\r\n",
" movie_ratings = []\r\n",
" \r\n",
" for name, ratings in recommendation[:20]:\r\n",
" movie_names.append(id_2_names[name])\r\n",
" movie_ratings.append(ratings)\r\n",
" \r\n",
" movie_dataframe = pd.DataFrame({'title': movie_names,\r\n",
" 'rating': movie_ratings}).merge(movies[['title', 'release_year']],\r\n",
" on='title', how='left')\r\n",
" \r\n",
" if latest == True:\r\n",
" return movie_dataframe.sort_values('release_year', ascending=False)[['title', 'rating']].head(num_recommender)\r\n",
" \r\n",
" else:\r\n",
" return movie_dataframe.drop('release_year', axis=1).head(num_recommender)"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 37,
"source": [
"TopXRec_SVD(363, num_recommender=10)\r\n",
"TopXRec_SVD(363, num_recommender=10, latest=True)"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" title rating\n",
"11 Wallace & Gromit: The Best of Aardman Animatio... 4.705187\n",
"2 Close Shave, A (1995) 4.832506\n",
"12 Shawshank Redemption, The (1994) 4.700431\n",
"1 Wrong Trousers, The (1993) 4.869839\n",
"19 Grand Day Out, A (1992) 4.672615\n",
"4 Blade Runner (1982) 4.819672\n",
"15 Apocalypse Now (1979) 4.683492\n",
"7 One Flew Over the Cuckoo's Nest (1975) 4.738641\n",
"16 Young Frankenstein (1974) 4.682844\n",
"10 Monty Python and the Holy Grail (1974) 4.705298"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>title</th>\n",
" <th>rating</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Wallace &amp; Gromit: The Best of Aardman Animatio...</td>\n",
" <td>4.705187</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Close Shave, A (1995)</td>\n",
" <td>4.832506</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Shawshank Redemption, The (1994)</td>\n",
" <td>4.700431</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Wrong Trousers, The (1993)</td>\n",
" <td>4.869839</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Grand Day Out, A (1992)</td>\n",
" <td>4.672615</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Blade Runner (1982)</td>\n",
" <td>4.819672</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Apocalypse Now (1979)</td>\n",
" <td>4.683492</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>One Flew Over the Cuckoo's Nest (1975)</td>\n",
" <td>4.738641</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Young Frankenstein (1974)</td>\n",
" <td>4.682844</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Monty Python and the Holy Grail (1974)</td>\n",
" <td>4.705298</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 37
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 36,
"source": [],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" title rating\n",
"11 Wallace & Gromit: The Best of Aardman Animatio... 4.705187\n",
"2 Close Shave, A (1995) 4.832506\n",
"12 Shawshank Redemption, The (1994) 4.700431\n",
"1 Wrong Trousers, The (1993) 4.869839\n",
"19 Grand Day Out, A (1992) 4.672615\n",
"4 Blade Runner (1982) 4.819672\n",
"15 Apocalypse Now (1979) 4.683492\n",
"7 One Flew Over the Cuckoo's Nest (1975) 4.738641\n",
"16 Young Frankenstein (1974) 4.682844\n",
"10 Monty Python and the Holy Grail (1974) 4.705298"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>title</th>\n",
" <th>rating</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Wallace &amp; Gromit: The Best of Aardman Animatio...</td>\n",
" <td>4.705187</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Close Shave, A (1995)</td>\n",
" <td>4.832506</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Shawshank Redemption, The (1994)</td>\n",
" <td>4.700431</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Wrong Trousers, The (1993)</td>\n",
" <td>4.869839</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Grand Day Out, A (1992)</td>\n",
" <td>4.672615</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Blade Runner (1982)</td>\n",
" <td>4.819672</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Apocalypse Now (1979)</td>\n",
" <td>4.683492</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>One Flew Over the Cuckoo's Nest (1975)</td>\n",
" <td>4.738641</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Young Frankenstein (1974)</td>\n",
" <td>4.682844</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Monty Python and the Holy Grail (1974)</td>\n",
" <td>4.705298</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 36
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 43,
"source": [
"# Evaluation\r\n",
"\r\n",
"# Than predict ratings for all pairs not in training set.\r\n",
"testset = trainset.build_anti_testset()\r\n",
"predictions_svd = svd.test(testset)\r\n",
"print('SVD - RMSE:', accuracy.rmse(predictions_svd, verbose=False))\r\n",
"print('SVD - MAE:', accuracy.mae(predictions_svd, verbose=False))"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"SVD - RMSE: 0.7015239638211899\n",
"SVD - MAE: 0.5429390320069348\n"
]
}
],
"metadata": {}
}
],
"metadata": {
"orig_nbformat": 4,
"language_info": {
"name": "python",
"version": "3.8.8",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3.8.8 64-bit"
},
"interpreter": {
"hash": "53e4db133e7a886bd36ef8c79c0b5519f0af174d53fdba9ad5d5d94e6d9f4b55"
}
},
"nbformat": 4,
"nbformat_minor": 2
}